RSA key pair generation
INPUT: Security parameter l.
OUTPUT: RSA public key (n, e) and private key d.
1. Randomly select two primes p and q of the same bitlength l/2.
2. Compute n = pq and φ = ( p − 1)(q − 1).
3. Select an arbitrary integer e with 1 < e < φ and gcd(e, φ) = 1.
4. Compute the integer d satisfying 1 < d < φ and ed ≡ 1 (mod φ).
5. Return(n, e, d)
Basic RSA encryption
INPUT: RSA public key (n, e), plaintext m ∈ [0, n − 1].
OUTPUT: Ciphertext c.
1. Compute c = me mod n.
2. Return(c)
Basic RSA decryption
INPUT: RSA public key (n, e), RSA private key d, ciphertext c.
OUTPUT: Plaintext m.
1. Compute m = cd mod n.
Amazing ! I am so happy that I found this article. You have posted the complete RSA encryption scheme. This article is of great help to me and I will do share it with all my friends too.
ReplyDeletedigital certificates